Zagadnienia z Biochemii.

Strona główna

Kontakt



  MENU

 Rodzaje DNA

 Strona główna

 Kwasy nukleinowe

 Nukleotydy

 Nukleozydy

 Związki wysokoenergetyczne nukleotydowe

 
 
 

Rodzaje RNA.

 


W komórkach zwierzęcych występują 4 zasadnicze rodzaje RNA: jądrowy -nRNA, transferowy - tRNA, matrycowy, czyli informacyjny - mRNA, i rybosomalny - rRNA.

Jądrowy RNA (nRNA)

stanowi mieszaninę wielu rodzajów kwasów rybonukleinowych. Niektóre z nich, np. tRNA i rRNA, są w jądrze komórkowym syntetyzowane i przebywają w nim tylko okresowo. W jąderku stwierdzono obecność RNA, który jest prekursorem rRNA. Występujący stale w jądrze komórkowym RNA można podzielić na dwa rodzaje. Jeden z nich jest bardzo szybko syntetyzowany i kataboli-zowany. Jego okres półtrwania wynosi od kilku minut do kilku godzin. Został nazwany kwasem rybonukleinowym heterogennym (hnRNA) o dużej masie cząste­czkowej, dlatego był nazwany olbrzymiocząsteczkowym. Obecnie jest określany nazwą prekursorowy RNA lub pre-RNA. Pewna część tego pre-RNA ulega przeisto­czeniu w mRNA. Poprzedza go wiele przemian, jak usuwanie zbędnych sekwencji RNA oraz modyfikacje końców 3'- i 5'-. Pre-RNA występuje w nukleoplazmie i jest otoczony białkiem, zwanym informomerem. Zadaniem tych białek jest łączenie się z częścią RNA zawierającą informację genetyczną w celu jej zabezpieczenia podczas transportu. Przechodzący do cytoplazmy mRNA jest bowiem narażony na działanie enzymów nukleolitycznych. W jądrach komórkowych tworzą się kompleksy białek zasadowych informomerowych z nicią mRNA. Noszą one nazwę informosomów. Większa część pre-RNA pozostaje w jądrze, natomiast mniejsza przechodzi do cyto­plazmy w postaci mRNA w kompleksie informosomowym.

Drugi rodzaj RNA jądrowego to metabolicznie stabilny snRNA, o stosunkowo małych cząsteczkach. Zawiera, oprócz typowych zasad azotowych, ich postacie umetylowane. Kwas ten został elektroforetycznie rozdzielony na 12 frakcji, którym przypisuje się funkcje regulatorowe.

Transferowy RNA (tRNA) stanowi 10—12% ogólnej ilości kwasów rybonukleinowych w komórce. Jest on zbudowany z 70-90 nukleotydów. Charakteryzuje się wśród innych rodzajów RNA najmniejszą masą cząsteczkową, zawartą w granicach od 25 do 30 kDa. tRNA cechuje wysoka specyficzność w stosunku do aminokwasów. Każdy z aminokwasów syntetyzowanego białka może być transportowany przez jeden, a niektóre przez kilka różnych tRNA. Cząsteczki tRNA występują w komór­kach w stanie wolnym bądź też związane ze specyficznym aminokwasem.

Cząsteczka tRNA ma budowę palczastą. Jest ona zwinięta spiralnie, a w pewnych miejscach tworzą się pętle. Ramiona tych pętli są dwuniciowe, skręcone spiralnie. Na tych odcinkach pary zasad mogą łączyć się wiązaniami wodorowymi. Niektóre fragmenty pętli mają jednakowe sekwencje nukleotydowe we wszystkich tRNA. Istnieją odcinki wykazujące znaczne różnice, które decydują o specyficzności tych kwasów. W składzie nukleotydowym tRNA, oprócz zasad typowych, występuje około 10% zasad „rzadkich", do których należą metylowe pochodne zasad typowych, a także pseudourydyna i dihydrourydyna. Zasady rzadkie znajdują się przede wszystkim we fragmentach jednoniciowych.

W cząsteczce tRNA wyróżniono 5 ramion: aminokwasowe, dihydrourydynowe, antykodonowe, dodatkowe oraz ramię 'PFC (pseudourydynowe). Każde z tych ramion pełni inną funkcję

Ramię aminokwasowe służy do przyłączania aminokwasu w postaci reszty aminoacyłowej. Na końcu 3' tego ramienia znajduje się zawsze układ nukleotydów CC A. Na drugim końcu tego ramienia (5') w 80% przypadków znajduje się nukleotyd G, w pozostałych 20% nukleotyd C lub A. Po przyłączeniu reszty aminoacyłowej

 na końcu 3' powstaje układ aminoacylo – tRNA, który można zobrazować schematycznie. 

Jest to postać aktywna transferowego RNA powstała na skutek enzymatycznej estryfikacji końcowej reszty adenylowej specyficznym aminokwasem.

Ramię TYFC służy do łączenia się z rybosomem i umocowania tRNA na matrycy. Ramię dihydrourydynowe ma znaczenie rozpoznawcze dla syntezy aminoacylo--tRNA. Ramię antykodonowe ma znaczenie podczas wybierania właściwego miejsca do przyłączenia transportowanego aminokwasu. Na końcu tego ramienia znajduje się antykodon, zawierający 3 nukleotydy o nie sparowanych zasadach, które mogą łączyć się komplementarnie z zasadami kodonu na matrycowym RNA. W ten sposób transferowy RNA znajduje odpowiednie miejsce dla swego aminokwasu.

Większość aminokwasów ma więcej niż jeden kodon. Z tego względu dla każdego z nich istnieje w komórce kilka odmian tRNA, zwanych izoakceptorowymi tRNA. Jeden antykodon w tRNA nie jest w stanie rozpoznać często bardzo różnych kodonów dla tego samego aminokwasu. Istnieje zatem pewna tolerancja w układzie kodon -antykodon. Pierwsza zasada od 5'-końca antykodonu może z pierwszą i drugą zasadą kodonu tworzyć tylko właściwe pary, natomiast z trzecią zasadą kodonu - nawet trzy różne pary. Oddziaływanie tego rodzaju między pierwszą zasadą antykodonu i trzecią kodonu jest znane pod nazwą: zasada tolerancji Cricka.

Ramię dodatkowe jest cechą charakterystyczną każdego tRNA i stanowi podstawę klasyfikacji cząsteczek tRNA.

Matrycowy, czyli informacyjny RNA

(mRNA) powstaje w jądrze komórkowym w procesie transkrypcji z DNA. Jest syntetyzowany z trifosforanów nukleozydów. Jego zasady są komplementarne w stosunku do jednej z nici chromosomowego DNA, na której jest wytwarzany. Matrycowy RNA przenosi informację genetyczną z DNA do cytoplazmy. Masa cząsteczkowa mRNA oraz sekwencja nukleotydów zależą do rodzaju białka, które jest w nim zakodowane. Trójki nukleotydów, czyli kodony, rozmieszczone w jego łańcuchu wyznaczają kolejność aminokwasów syntetyzowa­nego białka.

Budowa mRNA pro- i eukariontów wykazuje wyraźne różnice, decydujące o ich różnych właściwościach. Cząsteczka bakteryjnego mRNA może dysponować kodem dla całego zespołu białek. Ten mRNA jest zatem policistronowy. Oprócz kodonów łańcuch mRNA zawiera tzw. trójki nonsensowne, które są znakami przestankowymi, umożliwiającymi syntezę wielu białek. Długość łańcucha mRNA u prokariontów jest zależna od wielkości cząsteczek zakodowanych w nim białek. Końce łańcucha

transkrybowanego mRNA są nie zmodyfikowane, a więc nie zablokowane w celu ochrony przed degradacyjnym działaniem nukleaz. Cząsteczki mRNA prokariontów nie występują w połączeniach z białkami.

U eukariontów mRNA jest monocistronowy, a więc zawiera informację tylko dla jednego łańcucha polipeptydowego. Występują w nim przeważnie typowe zasady. Jest on pojedynczym łańcuchem skręconym w postaci spirali, chronionym białkami informomerowymi. W procesie transkrypcji u eukariontów powstaje najpierw pre--mRNA, jako składnik frakcji heterogennego jądrowego hnRNA. Dalszym etapem jest proces modyfikacji, w którym następuje dobieranie i łączenie z sobą fragmentów łańcucha RNA, aby powstał ostatecznie łańcuch zawierający informację o ściśle określonym białku.

Nić hnRNA jest znacznie dłuższa niż dojrzałego.mRNA. Nić ta zawiera regiony kodujące, zwane eksonami, które będą tworzyły dojrzały mRNA. Eksony oddzielają od siebie długie sekwencje, tzw. introny. Jeszcze na terenie jądra komórkowego introny, stanowiące większą część hnRNA, zostają usunięte, natomiast eksony zosta­ją połączone i tworzą mRNA.

Modyfikacji ulegają także końce łańcucha mRNA. Koniec 5' zostaje zablokowa­ny 7-rnetyloguanozyną, natomiast do końca 3' u większości eukarionów zostaje dołączony łańcuch poli(A) zbudowany z kilkudziesięciu nukleotydów adeninowych. Liczba tych nukleotydów wpływa na szybkość degradacji mRNA na skutek działania nukleaz. Modyfikacja końców mRNA, jak również obecność białek informomero-wych mają na celu ochronę informacji o cząsteczce białka zarówno podczas przeby­wania matrycowego RNA w jądrze komórkowym, jak i podczas jego transportu do cytosolu.

Rybosomalny RNA (rRNA)

stanowi około 80% ilości kwasów rybonukleino-wych komórki. Jest on podstawowym składnikiem rybosomów (por. rozdz. 2.6.1), gdzie sięga 65% zawartości. Resztę stanowią białka.

Rybosomalny RNA zawiera typowe zasady azotowe z niewielką domieszką ich metylowych pochodnych. Jego masa cząsteczkowa osiąga 2 MDa. Jest pojedyn­czym łańcuchem, bardzo mocno poskręcanym, tworzącym pętle, z fragmentami dwuniciowymi, gdzie występują wiązania wodorowe między komplementarnymi zasadami.

Rybosomalny RNA, podobnie jak inne rodzaje RNA, powstaje w procesie trans­krypcji z DNA. W komórkach prokariotycznych transkrypcja prowadzi do wytwo­rzenia pre-rRNA, który zawiera sekwencje wszystkich rodzajów rybosomalnych RNA. W komórkach eukariotycznych jest wytwarzany pre-rRNA 45S, zawierający sekwencje charakterystyczne dla 18S i 27S rRNA, natomiast oddzielnie jest wytwa­rzany pre-rRNA zawierający w swym składzie sekwencje 5S rRNA.

W rybosomach komórek prokariotycznych występują rRNA: 23S, 5S oraz 16S, gdy tymczasem w komórkach eukariotycznych: 28S; 5,8S; 5S i 18S. Rybosomalnym RNA towarzyszą w rybosomach liczne białka rybosomowe.